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ABSTRACT Most existing approaches to predicting the number of repetitive actions in videos focus on
improving model accuracy, but overlook important issues such as robustness to changes in human body
size and and occlusion of human body parts in videos. To achieve robustness to changes in human size and
and occlusion of human body in videos, we propose a novel network, Skeleton-based dual-stream Spatio-
temporal Transformer for Repetitive Action Counting (SSTRAC) using videos, which reconstructs defective
human skeletons as a preprocessing step, and then encodes the spatial and temporal information of repetitive
actions into the per-frame embeddings through the dual-stream spatio-temporal transformer. To capture both
high and low frequency actions in short and long videos, the per-frame embeddings are abstracted in the form
of a multi-scale self-attention matrix. In the final step, the period predictor estimates a density map, which
provides the number of repetitive actions in each video. We performed extensive experiments by comparing
the proposed model with other recent state-of-the art models. The experimental results demonstrate the
superiority of our model in terms of robustness to changes in human size and occlusion of human body
parts in videos. Codes and models are available at https://github.com/imjjun/SSTRAC_public

INDEX TERMS Repetitive action counting, skeleton, human size, occlusion, spatio-temporal, multi-scale,
density map.

I. INTRODUCTION
In recent years, various methods [1], [2], [3], [4], [5] for
repetitive action counting (RAC) in videos automatically
have been actively studied. However, most of the existing
methods for RAC which directly use videos focus on
enhancing the accuracy of models, but overlook the important
issues such as robustness to change in human size and
occlusion of human body parts in videos. People and
cameras can move freely, so the size of the people’s images
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in videos can vary. Because the number of dataset for
RAC is small, the performance of models can be greatly
affected by changes in human size. Thus, the performance
of existing models for RAC which directly use videos can be
degraded when there is change in human size and occlusion
in videos.

In this study, we investigate the relatively less explored
but practically significant issue: how to develop a model
for RAC that achieves robustness to changes in human
body size and occlusion of human body parts in videos.
To address such issue, we introduce a novel approach,
Skeleton-based dual-stream Spatio-temporal Transformer for
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FIGURE 1. SSTRAC architecture. We propose the Skeleton-based dual-stream Spatio-temporal Transformer for Repetitive Action Counting (SSTRAC) in
videos. SSTRAC consists of three main components: (i) motion encoder, (ii) a component that obtains a multi-scale self-attention matrix, and (iii) period
predictor. The SSTRAC takes a sequence of 2D skeletons as input, and then predicts a dense map and the count of repetitive action in a video.

Repetitive Action Counting (SSTRAC) in videos (see Fig. 1).
To the authors’ knowledge, there is little research for RAC to
achieve the robustness to changes in human body size and
occlusion of human body parts.

Our work is inspired by the recent RAC model,
TransRAC [2], and human motion representation model,
MotionBERT [6], but has the following fundamental
differences: (i) Unlike TransRAC [2] which directly uses
videos, our model only processes human motion data
as input in the form of skeleton sequences. Although our
model may not count the repetitive action of non-human
objects (e.g., pets, curtains) in videos, it focuses more on
human action. (ii) In our design, we use Dual-stream spatio-
temporal transFormer (DstFormer) in MotionBERT [6] as
a component of our model (i.e., motion encoder in Fig. 1)
to learn human motion representations. In MotionBERT [6],
DstFormer is trained by accomplishing the 2D-to-3D lifting
task, whereas in our case it is trained as a component for
our model by encoding rich spatio-temporal information
of repetitive actions. Moreover, unlike MotionBERT [6],
our model does not require any additional fine-tuning
process.

To predict the number of repetitive actions in the video,
several methods have been studied which use skeletons as
input [7], [8]. This is because the skeleton can be more robust
to camera view changes and background occlusion than RGB
image data [9], [10]. The size of people in the video may
change as people or the camera move. When using 2D pose
estimator, the performance of the model for RAC can be
robust to changes in the size of the person in the video.
This is because the 2D pose estimator normalizes the size of
human skeleton. Furthermore, the model that uses skeleton
sequences as input can be constructed lightweight because
the dimension of skeleton data is lower than RGB image
data [11], [12], [13].

However, except for PoseRAC [14], most existing mod-
els [7], [8] that use skeleton sequences as input, do not predict
density maps as a fine-grained representation to estimate

the number of repetitions in the video. In this case, the
models may incorrectly predict the start and end video frames
of the repetitive actions, but they can correctly predict the
number of repetitions by chance. To reduce these errors, it is
helpful to predict the density map [2] as well as the total
number of repetitive actions in the video. As shown in the
rightmost part of Fig. 1, the dark areas of the density map
indicate that a single repetition has occurred. Thus, density
maps may be helpful to interpret the performance of models
correctly.

Compared to PoseRAC [14], our model has the follow-
ing fundamental differences: (i) PoseRAC requires more
information such as salient poses to train than our model.
Therefore, to train PoseRAC, we need to annotate salient
poses to the existing RepCount-A dataset [2], which labels
the start and end video frames of repetitions in videos. For this
reason, comparing directly our model to PoseRAC may not
be entirely fair. (ii) Although PoseRAC requires additional
information about salient poses during training, this can result
in the lower accuracy of the model. This is because the
PoseRAC relies heavily on too small number (i.e. only two)
of salient poses to infer the number of repetitive actions in a
single video.

To achieve both model robustness and interpretability, the
proposed SSTRAC model shown in Fig. 1 takes a sequence
of skeletons as input and predicts a density map as a
fine-grained representation. Our model can address human
size changes and occlusion issues caused by human and
camera movements by adopting an occlusion-robust 2D pose
estimator [15]. The pose estimator generates 2D skeletons
whose sizes are normalized. This benefit may result from
the design of our model, using a sequence of 2D skeletons as
input.

As shown in Fig. 1, the SSTRAC model consists of
three main components: (i) motion encoder, (ii) a com-
ponent for obtaining a multi-scale self-attention matrix,
and (iii) period predictor. In motion encoder the repetitive
human actions in 2D skeleton sequences are encoded into
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per-frame embeddings through dual-stream spatio-temporal
transformer (see Fig. 2). The per-frame embeddings are
then abstracted to the multi-scale self-attention matrix as
shown in Fig. 4. The multi-scale self-attention matrix can
be obtained by computing three different self-attention
matrices to capture repetitive actions with different period
lengths. In the final step, the period predictor predicts
the density map, which enables to compute the total
number of repetitive actions in the video (see the right part
of Fig. 4).

The main contributions of this paper are summarized as
follows:

• We propose a novel network, Skeleton-based dual-
stream Spatio-temporal Transformer for Repetitive
Action Counting (SSTRAC), which consists of three
main components: (i) motion encoder, (ii) a component
for obtaining a multi-scale self-attention matrix, and
(iii) period predictor. One of the attractive features of
our model is that it can achieve model robustness and
interpretability by using skeletons as input and density
map as a fine-grained representation.

• In a motion encoder, rich spatial and temporal infor-
mation about human action in a skeletal sequence are
encoded in the form of a dual-stream. To capture both
high and low frequency action in short and long videos,
a multi-scale self-attention matrix is obtained. In the
final step, the period predictor estimates a density map,
which provides the number of repetitive actions in each
video.

• We conducted extensive experiments by comparing
the proposed model with other recent state-of-the art
models. Experimental results show that the proposed
model is superior to other state-of-the art models in
terms of robustness against changes in human size and
occlusion of human body parts in videos.

II. RELATED WORK
Existing models for RAC in videos can be classified into
two categories according to the type of input data: (i) RGB
image-based models and (ii) skeleton-based models. RGB
image-based models directly use images in video frames as
input. In contrast, skeleton-based models utilize a sequence
of human skeletons as input, which are extracted from
the video using a human pose estimator. The SSTRAC
model in this paper belongs to the skeleton-based models
for RAC.

A. RGB IMAGE-BASED MODELS FOR REPETITIVE ACTION
COUNTING
Zhang et al. [16] proposed a context-aware and scale-
insensitive model to estimate the count of repetitive action
in videos. However, it requires an exhaustive search to obtain
an initial guess about the length of double-cycle in the video.
RepNet [1], a class-agnostic model, uses a temporal self-
similarity matrix as an intermediate layer, and then predicts
both the period and count of repetitions in relatively short

videos (e.g., 0.4−30s). Li et al. [3] presented a model named
Hybrid Temporal Relation Modeling Network (HTRM-Net)
to enhance the representation of temporal self-similarity
matrices through the exploitation of hybrid temporal relation
modeling. Zhang et al. [4] proposed a framework to address
the issue of period inconsistency and motion interruption
in RAC. To overcome the period inconsistency challenge,
they developed a boundary-aware encoder which compresses
the temporal resolution of features to capture cycles of
varying temporal lengths. To address the issue of motion
interruption, they predicted the probability of each video
frame falling within the motion cycle to generate actionness
scores. Li and Xu [17] proposed a two-branch framework,
i.e., RGB branch and flow branch to improve the foreground
motion feature learning. Although the aforementioned studies
have made significant progress in RAC research, their
performance may be degraded if videos contain frequent
changes in body size or occluded body parts.

B. SKELETON-BASED MODELS FOR REPETITIVE ACTION
COUNTING
In human action recognition research using videos, skeleton-
based approaches have been actively studied because skeleton
data is more robust to changes in lighting, camera view,
background occlusion, etc. than RGB image data. Addi-
tionally, skeleton data has lower dimensionality than RGB
images, allowing for designing lightweight models [9], [10].
However, when narrowing down to the task of RAC in videos,
there are not many studies using skeletons. PoseRAC [14],
which uses a sequence of skeletons for RAC in the
video as input to the model, requires two salient human
poses.

C. DATASETS FOR REPETITIVE ACTION COUNTING
Recently, considerable efforts have been made to collect
video datasets for various action understanding tasks.
As a result of these efforts, numerous datasets for action
understanding from videos have been built and made
publicly available [18], [19], [20]. In contrast, there are
very few publicly available datasets for the task of RAC
in videos. To address the problem of insufficient video
datasets for RAC, various data augmentation methods have
been studied [1]. Among the datasets for RAC that have
been released to the public so far, the most representative
ones include QUVA repetition dataset [21], Countix [1],
UCFRep [16], and RepCount-A [2].

III. PROPOSED MODEL: SSTRAC
In this section, we introduce our model, SSTRAC for
counting repetitive human action in a video. Our model
aims to predict the count of repetitive action in videos
while simultaneously handling changes in human body size
and the occlusion of human body parts. As illustrated
in Fig. 1, the SSTRAC consists of three major compo-
nents: (i) motion encoder, (ii) a component for obtaining
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FIGURE 2. Motion encoder.

FIGURE 3. Mathematical notations: Given the i -th video frame, Vi ,
a skeleton Si can be extracted by using 2D pose estimator. The j-th row
of Si , denoted kji represents the j-th keypoint in the i -th skeleton.

a multi-scale self-attention matrix, and (iii) period predictor.
Below we describe the three main components in more detail.

A. SQUENCE OF SKELETONS
Given NT consecutive video frames, V = [V1,V2, . . . ,VNT ],
our model, the SSTRAC, first extracts a sequence of
skeletons, S = [S1,S2, . . . ,SNT ] ∈ RNT×NJ×ND using a
human 2D pose estimator [15] that is robust to occlusion
of human body parts in the image. Here NT is the number
of video frames, i.e., the sequence length, and NJ denotes
the number of keypoints in the skeleton. In our design,
NT = 256 and NJ = 17. As shown in Fig. 3, keypoints
of the skeleton are usually assigned to human body joints.
ND denotes the coordinate dimension of each keypoint. Thus,
ND = 2 (for 2D keypoints).

The j-th row of the i-th skeleton matrix, Si ∈ RNJ×ND (i =

1 . . .NT ) extracted at the i-th video frame Vi, is denoted kji ∈

R1×2, (j = 1 . . .NJ ) as follows:

Si =

 −k1i−
...

−kNJ i−

 (1)

where kji represents the 2D coordinate vector of the j-th
keypoint in the i-th skeleton, Si (see Fig. 3).

B. MOTION ENCODER
The motion encoder shown in Fig. 2 adopts the DstFormer
in MotionBERT [6], but has the following differences: The
motion encoder in Fig. 2 is trained as a component for

the SSTRAC model by capturing spatio-temporal repetitive
human motion features. In contrast, the DstFormer in
MotionBERT [6] is trained by accomplishing the 2D-to-3D
lifting task.

1) SPATIAL AND TEMPORAL POSITIONAL ENCODINGS
As illustrated in Fig. 2, a sequence of skeletons, S =

[S1,S2, . . . ,ST ] is first fed to a fully connected layer
(FC), and then projected into the high-dimensional features,
denoted F0

∈ RNT×NJ×CF . Here, CF is the feature size.
CF = 512. We call F0 the feature embedding at depth 0.
Then we add learnable spatial positional encoding Pspatial ∈

R1×NJ×CF and temporal positional encoding Ptemporal ∈

RNT×1×CF to F0.

2) DUAL-STREAM SPATIO-TEMPORAL TRANSFORMER
Motion encoder in Fig. 2 has a form of dual-stream which
contains spatial multi-head self-attention (Spatial MHSA)
and temporal multi-head self-attention (Temporal MHSA).
Fig. 2 shows the dual-stream architecture of the motion
encoder. In the upper part of Fig. 2, the spatial MHSA comes
first, followed by the temporal MHSA. Similarly, the lower
part of Fig. 2 has the temporal MHSA followed by the spatial
MHSA. The output feature of two streams are fused using
adaptive fusion weights, denoted αST , αTS ∈ RN×NT×NJ

where N is the depth of DstFormer. The feature embedding
Fi at depth i, (i ∈ 1, . . . ,N ) is computed by iterating the
following equation:

Fi = αiST ◦ T i
1 (S

i
1(F

i−1)) + αiTS ◦ S i2(T
i
2 (F

i−1)),

where ◦ represents element-wise multiplication. Here
S i1 andS

i
2 denote the spatialMHSA shown in Fig. 2. Likewise

T i
1 and T i

2 are the temporal MHSA (see Fig. 2). The adaptive
fusion weights, αST , αTS are calculated by

αiST , α
i
TS = softmax(W([T i

1 (S
i
1(F

i−1))])),S i2(T
i
2 (F

i−1))])),

where W is a learnable linear transformation and [, ]
represents a concatenation operation.

Unlike DstFormer in [6], the motion encoder of our model
does not require additional FC layers after adaptive fusion
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(see Fig. 2). For more details on the motion encoder in Fig. 2,
refer to the DstFormer in [6]. As shown in Fig. 2, the output
of motion encoder is per-frame embeddings,G, where its size
is NT × CF .

C. MULTI-SCALE SELF-ATTENTION MATRIX
To capture high and low frequency repetitive action in
short and long videos, our model uses the self-attention in
TransRAC [2]. While TransRAC [2] obtains a self-attention
for per-frame embeddings encoded from a sequence of video
frames, in our work we compute self-attention for per-
frame embeddings, G ∈ RNT×CF encoded from a skeleton
sequence.

Let gi ∈ R1×CF , (i = 1, . . . ,NT ) denote the i-th row vector
of G (see the leftmost part of Fig. 4) as follows:

G =

 −g1−
...

−gNT −

 .
From G, we construct three scale subsequences, X1,X4,

and X8, which are defined as

X1 = [{g1}; {g2}; . . .]

X4 = [{g1, . . . , g4}; {g5, . . . , g8}; . . .]

X8 = [{g1, . . . , g8}; {g9, . . . , g16}; . . .] (2)

Three types of skeletal sequences with different scales can
provide useful information for capturing repetitive human
action with different period lengths. In Eq.(2), the first row
of X4 is {g1, . . . , g4} which represents the concatenation
of row vectors, g1, . . . , g4 along the column-wise direction.
Each row of X1 and X8 in Eq.(2) is defined similarly
to X4. Here Xk , (k = 1, 4, 8) is constructed using a sliding
window with a step size k . The shape of matrices, X1,X4,
and X8 are (NT , 1 × CF ), (

NT
4 , 4 × CF ), (

NT
8 , 8 × CF ),

respectively.
Then, we can obtain three different self-attention matrices,

C1,C4, and C8 as follows: Ck = ψ(Xk ), (k = 1, 4, 8) where
ψ(·) is a multi-head self-attention (MSA) [22]. As shown
in Fig. 4, ψ(·) computes a multi-scale self-attention matrix
by encoding temporal correlations at different scales. The
shape of each Ck is (NT ,NT , h) which implies that its size is
NT ×NT × h. Here h is the number of heads (see Fig. 4) and
h = 4 in our design. By concatenating C1,C4 and C8 along
the channel-wise direction, we can construct a multi-head self
attention matrix, H as follows: H = {C1,C4,C8} whose
shape is (NT ,NT , 3 × h).

D. PERIOD PREDICTOR ESTIMATING DENSITY MAP
In this section, we introduce a period predictor, the third
component of the SSTRAC model (see the right part
of Figs. 1 and 4). The goal of period predictor is to estimate
a dense map that can be used to count repetitive action in a
video. To achieve this goal, we use the period predictor in
TransRAC [2].

1) DENSITY MAP
In this paper, the ground truth of a density map is called the
target density map. Target density map can be represented as
a column vector, m = (m1, . . . ,mNT ) ∈ RNT . To understand
what density maps mean, it is helpful to figure out how
the target density map is generated from video datasets.
In Section V-B, we explain how to generate target density
maps from video datasets. The meaning of the density map
can be explained as follows: The i-th component mi of the
target density map m represents the probability of a single
count in the i-th video frame during a repetitive action. Thus,
we can compute

c =

NT∑
i=1

mi (3)

where c ∈ R is the number of repetitive actions in the video.

2) PERIOD PREDICTOR
Now let us briefly explain how the period predictor [2] is
constructed. As shown in the right part of Fig. 4, we first apply
a ConvBlock (consisting of thirty two 3 × 3 convolutional
layers, batch normalization and ReLU function) to the multi-
head self attention matrix, H.

To project the features into a NT ×512-dimensional space,
we applied a linear layer to ConvBlock (H). Then we use the
transformer encoder to encode the count of repetitive action
in the skeletal sequences, taking the per-frame features as
an input. The output of transformer encoder whose shape
is (NT , 512), is then transferred to FC layer, which predicts
the density map (see the rightmost part of Fig. 4). The
predicted density map is represented as a column vector,
m̂ = (m̂1, . . . , m̂NT ) ∈ RNT .
From the estimated density map m̂i, we can infer the total

count, ĉ ∈ R, of repetitive action in the video as

ĉ =

NT∑
i=1

m̂i (4)

which is the final result of our model.

E. TRAINING LOSS
The total loss for training our model has the following form

L = λ1LMap + λ2LCount (5)

where LMap is the mean square error (MSE) loss of the
predicted density map and the target density map, which is
formulated as follows:

LMap =
1
NV

NV∑
k=1

LkM (m̂(k),m(k)) (6)

where NV is the total number of videos. The loss function
LkM (m̂(k),m(k)) in Eq.(6) is defined as

LkM (m̂(k),m(k)) =
1
NTk

∥m̂(k)
− m(k)

∥
2 (7)
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FIGURE 4. Multi-scale Self-attention matrix and period predictor.

where NTk is the number of video frames in the k-th video
and ∥ · ∥ represents the L2 norm (i.e., Euclidean norm) of a
vector. In Eq.(7), twoNTk -dimensional vectors, m̂(k) andm(k)

are the estimated density map and the target density map of
the k-th video, respectively.

In Eq.(5), LCount is the mean absolute error (MAE)
between the predicted count and the target count, which is
defined as

LCount =
1
NV

NV∑
k=1

|ĉk − ck |
ck

(8)

where ĉk is the estimated count of repetitive action in the k-th
video, and ck is the corresponding target count. In Eq.(8),
ck and ĉk can be computed from the k-th video using
Eqs.(3) and (4), respectively.
Remark: In this paper, MAE represents the error metric

LCount defined in Eq.(8).

IV. DATA AUGMENTATION
As mentioned in Section II-C, there are very few publicly
available datasets for RAC tasks in video, compared to
datasets that support more general video understanding tasks.
For this reason, data augmentation is required to improve
the performance of RAC models. In [1], Dwibedi et al.
presented a method to generate synthetic periodic videos
from unlabeled videos, by inserting the repeating video
frames into the original video and achieving camera motion
augmentation. However, to perform camera motion augmen-
tation, it is difficult to create a synthetic image from a
given set of RGB images by changing camera parameters
such as camera orientation and focal length. Compared
to RGB images, skeletons are relatively easy to generate
synthetically because they have fewer parameters and simple
structure [23], [24], [25], [26].

In this section, we present a method to synthetically
generate additional skeleton data by applying a linear

FIGURE 5. Data augmentation: We can generate different sets of 2D
keypoints by applying linear transformations such as rotation and
non-isotropic scaling to the original 2D skeletons.

transformation to the original skeleton data (see Fig. 5(c)
and (d)). The procedure to augment the dataset is as
follows:

• Repeat the following procedure until the number of
augmented data reaches a preset value.

• We randomly sample three numbers θ, φ, η ∈ R
within the following ranges: θ, φ ∼ Uniform(−π/6,
π/6) and η ∼ Uniform(0.96, 1.04). Here Uniform(a, b)
where a, b ∈ R represents a uniform distribution
from a to b.

• We then generate NT sets of Gaussian noises as follows:
ϵi, ζi ∼ N (0, 0.01) and ξi ∼ N (0, 0.001), (i = 1,
. . . ,NT ). Recall that NT is the number of consecutive
video frames in a single video. Then, we add the
Gaussian noises to θ, φ and η as follows: θi = θ +

ϵi, φi = φ + ζi, and ηi = η + ξi.
• Using θi, φi and ηi, the i-th 2×2 non-singular matrix Ai
can be created as follows:

Ai = R(θi)R(−φi)D(ηi)R(φi) (9)

where R(θi) and R(φi) are rotations given by θj and φj,
respectively (see Fig. 5(a) and (c)). The rotation matrix,
R(θi) is given by

R(θi) =

[
cos(θi) − sin(θi)
sin(θi) cos(θi)

]
.
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D(ηi) is a diagonal matrix of the form

D(ηi) =

[
d1 0
0 d2

]
. (10)

which performs non-isotropic scaling (see Fig. 5(b)
and (d)). In Eq.(10), we set d1 = 1 and d2 = ηi.
Eq.(9) represents a singular value decomposition of A
(For further details, refer to [27]): Ai = UiDiVi

T
=

(UiVi
T )(ViDiVi

T ) = R(θi)(R(−φi)D(ηi)R(φi)) where
Ui and Vi are orthogonal matrices.

• We randomly choose a video from Repcount-A [2]
dataset.

• From the chosen video, we then extract a sequence
of skeletons Si, (i = 1, . . . ,NT ) using 2D pose
estimator [15] as shown in Fig. 3. The j-th row of Si
represents the j-th 2D keypoints, kji ∈ R1×2 in the i-th
skeleton (see Eq.(1)).

• From the original skeleton data, Si, we can generate a
new set of skeleton data, S̃i, (i = 1, . . . ,NT ), as follows:

S̃i
T

= AiSTi . (11)

The effectiveness of data augmentation is experimentally
demonstrated in Table 8 of Section V-F3.

V. EXPERIMENTS
A. DATASETS
Among video datasets for RAC, the QUVA repetition
dataset [21] and Countix [1] support more general and
class-agnostic forms of RAC, such as periodic changes in
illumination and the repetitive action of animal and human in
videos. Compared to QUVA repetition dataset and Countix,
RepCount-A [2] and UCFRep [16] focus more on repetitive
human action in videos. Thus, we use RepCount-A and
UCFRep to train and test our model that takes human
skeletons as input.

Existing video datasets for RAC can be broadly classified
into two categories: (i) coarse-grained datasets and (ii) fine-
grained datasets. In the coarse-grained dataset (e.g., the
QUVA repetition dataset, Countix, and UCFRep), the number
of repetitive actions in each video is annotated, but the start
and end video frames of repetitive actions are not labeled.
In contrast, the fine-grained dataset (e.g., RepCount-A)
contains labels for the start and end video frames of each
repetitive action in videos.

1) REPCOUNT-A DATASET FOR TRAINING AND TESTING
MODELS
Compared to coarse-grained dataset, fine-grained dataset can
provide better interpretability to models [2]. For example,
the total number of repetitions estimated by the model is
correct, but the video frames at the start and end of the
repetitive action in the video may be wrong [2]. In this
case, the model may be incorrectly evaluated as performing
well on a coarse-grained dataset, but in reality, the model
did not perform well. Thus, a fine-grained dataset may be
more suitable for model interpretation. For this reason, our

FIGURE 6. Skeletons extracted from the videos in datasets using 2D pose
estimator [15]: The images shown are from (a) the RepCount-A dataset [2]
and (b) the UCFRep dataset [16].

FIGURE 7. Statistics of the selected RepCount-A dataset [16] used in our
experiments: histograms of (a) number of repetitions and (b) video
durations.

model utilizes a fine-grained dataset such as RepCount-A
dataset.

Unfortunately, in the RepCount-A dataset [2] it is unclear
who is actually performing the repetitive actions among
multiple people. This problem was pointed out by the
researchers who created the RepCount dataset in their
paper [2]. Additionally, due to poor lighting in the video
or other reasons, the 2D pose estimator may not be able
to extract the skeleton. For the reasons mentioned above,
we could not use the entire RepCount-A dataset for training
and testing our model, but instead selected videos from the
dataset where the 2D pose estimator recognized the human
skeleton well.

We split the selected RepCount-A dataset [2] to use
for model training, validation, and testing. See Table 2 in
section V-D for a detailed explanation of how we split
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FIGURE 8. Statistics of the selected UCFRep dataset [2] used in our
experiments: histograms of (a) number of repetitions and (b) video
durations.

TABLE 1. Statistics of the datasets used in our experiments.

the training, validation, and test data. Fig. 6(a) shows the
skeletons extracted from the RepCount-A [2] using the 2D
pose estimator [15]. To ensure a fair comparison, both the
existing models and our model were trained using the same
dataset selected in this way.

2) UCFRep DATASET FOR TESTING MODELS
Unlike the RepCount-A [2], which is a fine-grained dataset,
the UCFRep dataset [16] is a coarse-grained dataset where the
start and end of the repetitive actions in videos are not labeled.
So we should annotate the video frame numbers of the start
and end of repetitive actions in videos from the UCFRep [16].
We first select videos from the UCFRep [16] where the 2D
pose estimator is well recognized. The procedure mentioned
above is almost the same as selecting videos from the
RepCount-A dataset.

To add fine-grained annotations to the UCFRep dataset,
we follow the labeling process for RepCount-A described
in the paper [16] as follows: (i) Videos from the selected
UCFRep are divided in half and assigned to two volunteers.
(ii) Two volunteers annotate the start and end video frame
numbers of repetitive actions in the video. (iii) Then,
two volunteers perform cross-validation by comparing the
annotations. If the count of repetitive actions labeled by two
volunteers differs by more than one, they should revise their
annotations.

3) DATASET STATISTICS
Figs. 7 and 8, and Table 1 show the statistics of the
selected RepCount-A [2] and UCFRep [16] used in our

FIGURE 9. Generateion of multiple gaussian probability density functions
(PDFs) from annotations that indicate the start and end frame numbers of
repetitions in the video.

experiments. When looking at the statistics on the number
of repetitions and duration in Table 1, we can see that
the selected RepCount-A dataset has very similar statis-
tics to the original RepCount-A. The UCFRep dataset
we selected also has similar statistics to the original
UCFRep in terms of the number of repetitions and duration
(see Table 1).

B. GENERATING TARGET DENSITY MAPS FROM VIDEO
DATASET
In this section, we briefly explain how the target density
map, m = (m1, . . . ,mNT ) ∈ RNT , is generated from
video dataset. Recall that NT is the number of video frames.
Through the process described below, we can generate the
target density map from coarse-grained video datasets such
as UCFRep [16]. For further details, see [2].

First, suppose that the start and end video frame numbers
of repetitive action in a video are already manually annotated
as follows: y = (y1, y2, . . . , y2c) where c represents the total
number of repetitive actions in the video. The goal of this
paper is to estimate c value from the video frames. Then
y2k−1 and y2k , (k = 1, . . . , c) represent the start and end
video frame numbers of the kth repetitive action in the video,
respectively.

For 0 ≤ z ≤ NT , we can define a function G(k)(z) as

G(k)(z) =

{
N (z;µk , σk ), if z ∈ [µk − 3σk , µk + 3σk ]
0, elsewhere

(12)

where

N (z;µk , σk ) =
1

√
2πσk

e
−

(z−µk )
2

2σ2k . (13)

Here µk and σk are the mean and standard deviation of
k-th repetitive action in the video frames so that [y2k−1, y2k ]
corresponds to the 99% confidence interval of the Gaussian
distribution. Since y2k−1 and y2k are given by the manual
annotation, we can obtain µk and σk by using the following
equations: y2k−1 = µk − 3σk and y2k = µk + 3σk . For
example, in Fig. 9, two functions G(k)(z) and G(n)(z) for
the k-th and nth repetitive action show that the number of
repetitive actions in this case is 2.
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By using Eq.(12), the i-th component, mi of the density
mapm can be calculated as

mi =

∫ i+0.5

i−0.5

c∑
k=1

G(k)(z)dz, i ∈ [1, 2, . . . ,NT ] (14)

C. BENCHMARK AND EVALUATION METRICS
We evaluate our models on two video datasets: a subset of
the RepCount-A dataset [2] and the UCFRep dataset [16].
Among the evaluation metrics for models predicting the
number of repetitions in a video, MAE in Eq.(8) and OBO
(Off-By-One) count are widely used [1], [2]. Let us assume
that the model prediction is accurate if the predicted count
is within 1 count of the ground truth value. Otherwise the
prediction is considered inaccurate. From this perspective, the
OBO count is defined as

OBO =
1
NV

NV∑
k=1

IA(|ĉk − ck | ≤ 1) (15)

where ck and ĉk can be obtained from the k-th video using
Eqs.(3) and (4), respectively. Here NV is the total number
of videos. In Eq.(15), IA(·) represents an indicator function
defined as

IA(a) =

{
1 if a is true
0, else.

Models with low MAE in Eq.(8) and high OBO count in
Eq.(15) are preferred.

D. IMPLEMENTATION DETAILS
We implemented the SSTRAC model using PyTorch.
As shown in Fig. 1, our model consists of three components:
(i) motion encoder, (ii) a component that obtains a multi-scale
self-attention matrix, and (iii) period predictor. As a pre-
processing step, we first extract 2D skeletal sequences from
the video using an occlusion-robust 2D pose estimator [15]
(see Figs. 3 and 6). In our implementation, the number of
video frames,NT in a video is equal to the number of skeleton
sequences. We set NT = 256. If the number of input video
frames does not exceed 256, zero padding is applied to
the skeleton sequence. In the motion encoder (see Fig. 2),
the number of heads is 8, and the depth is N = 3
(i.e., Ours (Base) model) or N = 5 (i.e., Ours (Large)
model).

Our model was trained for 200 epochs with a declining
learning rate of 8 × 10−6 and optimized with the Adam
optimizer using batch size 4 (i.e. 4 videos). For the training
loss in Eq.(5), we set λ1 = 1 and λ2 = 0.1. We conducted
experiments by running models on a single NVIDIA RTX
3080Ti GPU.

E. EVALUATION AND COMPARISON
In this section, we present experimental results com-
paring our model with other state-of-the-art models
such as TransRAC [2] and PoseRAC [14] using subsets

of RepCount-A [2] and UCFRep [16] (see Table 2). Here,
PoseRAC requires additional work to annotate salient poses
in the RepCount-A and UCFRep.

1) QUANTITATIVE COMPARISON
We first split the given RepCount-A [2] and UCFRep [16]
(see Table 2). We trained our model and other state-of-
the-art models using parts of RepCount-A (see Table 2).
Hyperparameters for eachmodel were set using the validation
set of RepCount-A. We then performed comparative experi-
ments using the test set, i.e., a part of RepCount-A, and the
UCFRep.

Table 3 summarizes the main experimental results,
showing that our model (i.e., Ours (Large) or Ours (Base))
outperforms existing state-of-the-art models. In Table 3,
‘‘w/o’’ and ‘‘Data Aug.’’ mean ‘‘without’’ and ‘‘Data Aug-
mentation’’, respectively. The data augmentation procedure
for the training data is described in Section IV and V-F3.
The expression ‘‘our dataset’’ in Table 3 refers to the
dataset selected from RepCount-A and UCFRep described
in Table 1. In Table 3, the expression ‘‘TransRAC
(pre-trained)’’ means that a pre-trained TransRAC model
was used in the experiments. Thus, all models in Table 3
except ‘‘TransRAC (pre-trained)’’ were trained using our
dataset.

The superiority of our model to TransRAC and PoseRAC
in Table 3 may result from the dual-stream spatio-temporal
transformer in the motion encoder. Here, the motion
encoder captures rich spatial and temporal information from
the skeletal sequence and encodes them into per-frame
embeddings.

As will be explained in the ablation study (see
Section V-F2), abstracting the encoded per-frame embed-
dings using multi-scale self-attention in the model also
contributes significantly to the model’s superior performance
over PoseRAC. This implies that PoseRAC in Table 3 may
rely heavily on a small number of salient poses, which leads
to relatively low performance.

Compared to TransRAC, our model is expected to
require fewer parameters because it uses lower-dimensional
skeletons as input. However, as shown in Fig. 10, Ours
(Large) has more parameters than TransRAC due to the
motion encoder. Note that the lightweight model (i.e., Ours
(Base)) is more accurate and has fewer parameters than
TransRAC (see Table 3 and Fig. 10). If we ignore model
lightness and only pursue lower MAE and larger OBO, Ours
(Large) is better than Ours (Base).

TABLE 2. Dataset splitting: A subset of the RepCount-A dataset presented
in Table 1 is randomly split into training, validation, and test sets
containing 395, 53, and 66 videos, respectively. The subset of UCFRep
in Table 1 is used only for model testing.
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FIGURE 10. Comparison of number of parameters.

TABLE 3. Main experimental results (in case of no occlusion):
We compare our model with the state-of-the-art models trained on
selected datasets from RepCount-A and UCFRep, which are described
in Table 1. As an exception, ‘‘TransRAC (pre-trained)’’ means a pre-trained
TransRAC model.

2) VISUAL COMPARISON
The ground truths for the number of repetitions in Fig. 11(a)
and (b) are 3 and 2, respectively. In Fig. 11, dark areas
on the target density map indicate areas where repetitive
actions occur. Fig. 11(a) and (b) visually show that the
proposed model (i.e. Ours (Base)) outperforms the existing
state-of-the-art model, transRAC, in terms of density map
prediction.

3) HANDLING CASES WHERE OBJECTS OCCLUDE A PERSON
IN THE VIDEO
When predicting the number of repetitive actions in a video,
the target is usually a person. However, it is common for
people to be cropped or occluded by other objects (e.g., pets
or furniture) in the video. To the best of our knowledge,
existing models for RAC do not address this occlusion
problem in videos.

In existing models (e.g., TransRAC [2]) that directly
extract RGB features from images, the network structure can
become complex if such occlusion is taken into account.
In contrast, our model can solve this occlusion problem
independently of the network structure. Our model addresses
the occlusion problem by reconstructing the defective 2D
skeleton using a pre-trained occlusion-robust 2D pose
estimator [15].

FIGURE 11. Visual comparison (in case of no occlusion).

To simulate the occlusion problem, we generate synthetic
objects that occlude a person in the video of RepCount-A.
In our experiment, the synthetic object is a basketball,
which initially appears on the right side of the video. The
ball moves from right to left based on a random function
with a maximum pixel range of [-2,1] per video frame.
As a result, the ball tends to move leftward across the
video, with its speed randomly determined. The reason for
creating a synthetic object from a video is that we can
know the ground-truth of the number of repetitions through
simulation.

From Table 4 and Figure 12, we can see that our
model outperforms TransRAC in the presence of synthetic
occlusion.

TABLE 4. Experimental results of models using the selected RepCount-A
dataset described in Table 2 (in case of occlusion): In this experiment,
a synthetically generated basketball moves slowly from right to left in the
video (see Fig. 12).
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FIGURE 12. Visual comparison (in case of occlusion).

4) RUNTIME PERFORMANCE
In this section, we present the runtime performance of
our model by measuring the inference speed. To measure
inference speed, we ran the model on a desktop computer
equipped with an Intel i9-11900KF CPU and an RTX 3080Ti
GPU. Table 5 shows that the motion encoder in our model
consumes the most computational time during the inference
process.

TABLE 5. Average computation time for each component of our model
(Ours (Base)): Units are milliseconds (msec).

F. ABLATION STUDY
As an ablation study, we empirically evaluate the impact
of each component of the SSTRAC model (see Figs. 1, 2,
and 4) on model performance using the selected RepCount-A
dataset described in Table 1. In this ablation study, the
depth of the motion encoder is set to N = 5 (i.e., Ours
(Large)). We then unveil the effectiveness and rationality of
the proposed model.

1) DUAL-STREAM ARCHITECTURE OF MOTION ENCODER
The motion encoder in Fig. 2 has a dual-stream archi-
tecture that fuses spatio-temporal stream and temporal-
spatial stream. We performed ablation studies by removing
the spatio-temporal stream or the temporal-spatial stream
(see Table 6). Here, the spatio-temporal stream represents
a single stream in which the spatial MHSA comes first,
followed by the temporal MHSA. Similarly, the temporal-
spatial stream has the temporal MHSA followed by the
spatialMHSA. Table 6 shows that themodel with dual-stream
architecture performs best.

2) MULTI-SCALES FOR CALCULATING SELF ATTENTION
MATRICES
The multi-scale self-attention matrix shown in Fig. 4 contains
abstracted features for repetitive actions with different period
lengths in the skeletal sequence. We conducted experiments

TABLE 6. Ablation study on dual-stream architecture for motion encoder.

changing combinations of three different scales, i.e., scale 1,
4, and 8 (see Fig. 4 and Eq.(2)). Table 7 shows that the model
using all three scales (i.e., scale 1, 4, and 8) performs best.
Having more diverse scales can improve the performance
of models, but may come at the expense of increased
computational complexity.

TABLE 7. Ablation study on multi-scales for obtaining self attention
matrices.

3) DATA AUGMENTATION
This section explains how to augment the training data in
RepCount-A. As shown in Table 2, the number of videos
used for training models in the RepCount-A data is 395.
First, we randomly sample 105 of the 395 videos used
to train the model in the RepCount-A dataset. We extract
skeleton sequences from the 105 videos using the 2D pose
estimator [15], and then apply an affine transformation
to them for generating a new set of skeleton sequences
(see Section IV). Thus, the augmented dataset consists of
skeleton sequences extracted from the original 395 videos
and newly generated skeleton sequences from 105 sampled
videos.

Table 8 demonstrates that data augmentation explained in
Section IV is effective. Table 8 shows only the experimental
results corresponding to Ours (Base) and Ours (Large)
in Table 3.

TABLE 8. Ablation study on data augmentation.

VI. CONCLUSION AND LIMITATIONS
The goal of this paper is to develop a RAC model that
is robust to changes in human size and occlusion of
body parts in videos. To achieve this goal, we presented
a novel SSTRAC model consisting of motion encoder,
a component for obtaining a multi-scale self-attention matrix,
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and period predictor. The proposed model takes a sequence of
skeletons as input and can encode rich spatial and temporal
information through the dual-stream spatio-temporal trans-
former of themotion encoder. Per frame embeddings encoded
by the motion encoder are then abstracted into a multi-
scale self-attention matrix shown to capture human repetitive
actions with different period lengths. In the final step, the
period predictor estimates a density map, which provides
the number of repetitive actions in each video. Extensive
experiments have shown that our model outperforms other
state-of-the-art models in terms of robustness to the change
of human body size and the occlusion of human body parts in
videos.
Limitations: The performance of the proposed model is

affected by the 2D pose estimator used in the preprocessing
step. The 2D pose estimator [15] used in this paper is
robust to occlusion, and the dataset contains videos with little
occlusion or blur. However, its performance may be degraded
under severe occlusion or motion blur.

Most 2D pose estimators have limitations in that they
are not robust to camera viewpoint changes and camera
distortion. To address these issues when using the 2D pose
estimator for RAC, we augmented our dataset by applying
rotation and non-isotropic scaling to the training data, which
consists of 2D skeletons. Applying rotation and non-isotropic
scaling to the 2D skeletons allows us to approximate changes
in camera viewpoint, camera distortion, and 2D skeleton
distortion (see Fig. 5(c) and (d)).
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